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The solution of Poisson’s equation on the surface of a sphere may not exist unless
the right side of the equation is perturbed. A method for perturbing is described which
then admits a least squares solution. This least squares solution is obtained by the
Fourier method which is economical in both computational time and storage.

1. INTRODUCTION

A solution of Poisson’s equation on the surface of a sphere may not exist and if it
does exist it is not unique. Any solution is nonunique since that solution plus an
arbitrary constant is also a solution. In many applications this nonuniqueness is
not a concern. For example, in computing incompressible fluid flow, the pressure is
determined by solving Poisson’s equation. However, the gradient of the pressure is
used to predict the course of the fluid, and therefore an additive constant may be
selected arbitrarily without affecting the flow. Hence, instead of a single solution u,
we are interested in an equivalence class @ of solutions where v € 4 if and only if
v = u -+ constant.

The nonexistence of a solution is a problem which requires additional considera-
tion. For a solution to exist, the right side of Poisson’s equation must satisfy an
orthogonality condition which will be derived in Section 3. As a result of computa-
tional or observational errors this condition may not be satisfied. In this event, a
reasonable alternative is to determine a least-squares solution [2, 4]. In this paper,
we elect to perturb the right side of the equations so that the system becomes con-
sistent and existing methods can then be used to obtain the solution. There are two
factors to consider when perturbing the right side. First, the perturbation should
be small so that the solution almost satisfies the unperturbed equations. Second,
the perturbation should be the same at each point since it is probable that no a
priori knowledge is available about the functional dependence of the errors. The
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first factor is treated by perturbing the right side so that the solution to the resulting
consistent system is a least squares solution to the unperturbed system. However,
the least-squares solution depends on the choice of the vector norm. The second
factor is treated by selecting this norm so that the resulting perturbation is a
constant. It is shown at the end of Section 3 that the usual choice of the /, norm
results in a perturbation which is not constant and approximates a function wiich
is not differentiable at the poles. This latter property is undesirable as it can rasult
in a solution which is not regular at the poles even though the right side of Poisson’s
equation is specified as regular. In time dependent flow problems, Peisson’s equa-
tion is solved many times and the error induced by such irregularities can accu-
rmulate.

The discrete problem is described in Section 2 together with its matrix
formulation. In Section 3 a necessary and sufficient condition for the existence of a
solution is derived. This section also contains the method of perturbing the right
side. Section 5 contains a direct method for solving the resulting consistent linear
system of equations. There are presently two direct methods which compete for
being the most efficient way to solve this system. The Buneman variant of the cyclic
reduction algorithm and the Fourier series method [1, 31 In a previous paper 5]
it was shown how the Buneman algorithm could be adapted to solve Poisson's
equation on a disk. In this paper we will discuss the Fourier series method appiied
to the surface of the sphere. It makes extensive use of the fast Fourier transform
which is generally available in subroutine form. These direct methods are desirable
both from a standpoint of speed and storage. The operation count for both is
proportional to mn log n where m and # are the number of latitude and longitude
points respectively. They require half the storage of iterative methods since the
sclution may be returned in the storage occupied by the right side of Poisson’s
equation.

2. THE DISCRETIZATION

We wish to determine an approximate soluticn of Poisson’s equation defined
on the surface of a sphere.
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We place a net on the surface of the sphere by selecting integers » and »
and defining net spacings 46 = #/(m + 1), 4¢ = 2u/n and the net
8, = iA0 i=0,4L1.,m+%mit1,

b;=jd¢ j=12,...,n
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We wish to determine values v;; which approximate u(f;, ¢;). To this end we
require that the v,; satisfy finite difference approximation to (2.1).

1 . .
AP sin 0. [$I0 043 /5(Vi41, — Uig) — SIR 05y o(Vs5 — V3g,9)]
z

1

T AF 5020, @i — 2005 + 0359 = fis 23)
fori=1,2,..,mandj=12,.,n
If we define
g = sin 0,_y,»
T A6%sin 9, °
. sin B4/
by = A62sin 6, ° (2.4)
1
4= g e,

Then (2.3) can be written
A;Viy,; (az —I' bz) Uy,j T b Viv1,5 _l" d(l’z j—1 2Uz’,7’ + Ui,y'Jrl) :f;,J H (25)

for i=1,2,..,m and j=1,2,..,n where f;; = f(6;, ¢;). As a result of the
periodicity in ¢ we have v; , = v;,,, and v, ,,4 = v;;. We will denote by v, the
value common to all v,;, j=1,2,..,# and vs as the value of v, ,; for
J=12,..,n Also we will denote f,; by fy and f,.,1; by fs. We then have
nm -+ 2 unknowns, namely vy, vy and v;; for i = 1,2,...,mand j=1,2,....n
Equation (2.5) represents mn equations. An additional equation is obtained by
integrating (and subsequently discretizing) Eq. (2.1) over the spherical segment
0 < 49)2.

4 2
— Uy, — MUy ) = fx . 2.6
n 462 (]z::1 1 N) N )
Similarly at # = 7 we obtain
4
—F (Y s — 10s) = fs, @.7)

which together with (2.5) and (2.6) provide mn + 2 equations. We can write the
complete linear system of equations as

Av = f. (2.8)
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The vector v has length mi + 2 and is of the form o7 = {oy, vlT, g7, 0,7, Vsl
with o, = (¢4, ts,j 5er-» Um,;). The vector fhas the form /7 = {f,, ;7. J /.

where f;7 = (T}“fap o> fm.i)-

If we let B = 4/(nd6?) then A is an mn + 2 by mn - 2 mairix of the form

—Bn | wT } O
A= X B ] ¥ 2.5
|
0 z7 l —PBn

The vectors w, x, ¥, and z are of length mn and are of the form
w?h = (T, wl,..., wyT), where w.? = {f,0,.., 0)

has m components and is repeated » times. Similarly

xT = (7, x,%,..., x30), where %7 = {4, 0,...,0),
¥ =Ty snD),  where 37T =(0..,0,5,) {2.10)
727 = (77, 2,70y Z5), where z,¥ = (0,..., 0, B).
The mairix B has order mn and is of the form
C - 2D D D 'E
D C—2D D !
B= N E (2.1%)
D C —2D ) 5
D D C—2D
where D is a diagonal matrix of order m, D = diag(d,, d>,...,d,,) ané £ is an
r1 X m tridiagonal matrix
—(a; + by) by E
az —(as + by) b, |
C = ' s g (2.12;
i * gy *(am—l -+ b ‘7'1"‘1) b:n—l é
G _”(am + b l} i
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3. LEAST-SQUARES SOLUTIONS

In this section we will first give necessary and sufficient conditions on f for a
solution to exist. In the event a solution does not exist we then show how to perturb
f'so that the resulting consistent system has a solution which is a least-squares solu-~
tion to the unperturbed system.

THEOREM 1. The linear system Av = f has a solution if and only if fTh =0
where

n . n .
hT = (Z sin 0y , 1T, 1y Toeee, BT, 7 Sin 0m+1,2)

and 3.1
AT = (sinf,,sinb,,..,sinb,).

Proof. 1t can be shown that ATh = 0 and therefore the rank of 4 is less than
mn -~ 2. However, if we delete the first row and column of 4 then the resulting
matrix is irreducibly diagonally dominant and therefore nonsingular [6, p. 23].
Hence the rank of A is mn -+ 1 and % spans the nuil space of AT. This completes
the proof since we know that 4o = fhas a solution if and only if fTh = 0 for every
h such that ATh = 0.

In practice, as a result of computational or observational errors, f7h = 0, and
the system does not have a solution. In this event, an acceptable option is to
determine a least-squares solution. We will perturb f so that a solution to the
resulting consistent system is a least-squares solution to the original inconsistent
system. Further, the norm will be selected so that the perturbation is a scalar
multiple of the vector eT = (1, L,..., 1).

If we define the matrix H = diag (&) then H is positive definite, and we can
define the inner product

(f,8)u = fTHg (3.2)

and the induced H norm

| ulf = uT Hu. (3.3)

THEOREM 2. If v is a solution to the consistent system, Av = g where

g=f— (e f)l-[ (34)

(3 e)H

then v minimizes || Av — flig .
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Proof.

ATHAv = ATHg,

ATHAv = AH (f — @ o)

(es 8);{ /

ATHAv = ATHY.

A derivation of the normal equations shows that » minimizes | Av — /|y if and
only if v is a solution to the consistent system ATHAy = ATHf.

Remark 1. v determines an equivalence class % of solutions since v + xe is
also a solution for any scalar «.

Remark 2. The matrix HA is symmetric, hence for arbitrary vectors g and 7,
(g, Af )z = (4g, ) . Therefore the matrix A represents a seif-adjoint operator
under the inner product defined by (3.2).

Remark 3. For arbitrary fand g

L ek

! > {3.5]
(e, Q)H A

SN
Tt
<

o’

(6, g)H

(e, N)m eHZ _olefn

LSl =g =1+ 50

H (ga e)H
Hence, subject to (e, g)» = 0, this expression has a minimum value of (e, /(2. ¢}x
for g defined by (3.4).

Remark 4. v is the least-square solution (/, norm) to the weighted system
HY2A = HY%.

Remark 5. There is considerable freedom of choice for the perturbation of 7.
For example let P be any symmetric positive definite matrix and define ¢ = P
Then a least-squares solution (P norm) is given as a selution to the consistent
system

(67 f )P
Av = f— o <,
where (e, f)p = 7 Pf.
Hence P can be selected to provide almost any functional dependence for e.
However, usually the functional dependence of the errors in / will not be known
and therefore it is reasonable to perturb f by e which has no functional dependence.
If the usual /; norm is selected, then ¢ = / which is not constant and alsc approxi-
mates a function which is not regular at the poles.
We close this section with a summary of the calcunlations used to perturb £
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1. Compute the inner product of f with e

(e, g = nsin O, ,5/4(fy + f) + Y, sini 48 ) f;;. (3.6)
i=1 j=1
II. Compute (e, €)x
(e, g = msin 0, ,5/4 -+ n(1 + cos 0;,,)/sin 8,5 . (3.7
III. Define
_ (ea f)H
= (e:v e)H ?

then the elements of the vector g are computed from

gi=Jus—a i=12,..,m;, j=12,..,n
gy =Jy—
gs=Js— a

4. SOLUTIONS OF THE CONSISTENT SYSTEM

In this section we assume that ATg = 0 and hence the system Av = g hasa
solution. The approach will be to deflate the system to a nonsingular system which
can be solved by existing methods. For completeness, the Fourier series technique
is described.

Let E denote the matrix which is obtained by replacing the first row of the
identity matrix by the vector 7. Eis nonsingular since its determinant is # sin 6, ,/4.
Now if we multiply Av = g by E we obtain

EAv = Eg. 4.1)

The first element of £g 1s ATg = 0. The remaining elements are unchanged from the
corresponding elements of g. Also the first row of EA is just A74 which is zero.
The remaining rows are unchanged from those of 4. To solve (4.1) we can arbi-
trarily set vy = 0, then the system of order mmn + 1, consisting of (4.1) with the
first equation and the first variable vy deleted, is nonsingular and can therefore
be solved by a variety of methods. The solution to this system of reduced order,
augmented with v, = 0 is a solution of (4.1) and therefore of 4v = g since F is
nonsingular. This deflation is equivalent to specifying vy to be zero and then solving
the system of reduced order. Note that Eq. (2.6) with fy replaced by gy, will be
satisfied since the system is singular and (2.6) can be expressed as a linear com-
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bination of the remaining equations which are satisfied. The nonuniquensss is
demonstrated by the fact that v, may be arbitrarily selecied.

We will now describe the Fourier series method: The elements of the vecior 2
can be exoressed in the form

G cos k; -+ G sin k), 4.2

l
el

0

where for each 7, the coefficients Git) and G} may be obtained from 2 one dimen-
sionai fast Fourier transform (FFT) in the variable ¢. If 1 is even then £ = »/Z;
if 11 is odd then L = (n — 1)/2.

We will determine a solution in the form

L
=3 (@ (Y cos kd; + V& sin k), 4.3
=0

P

where the coefficients ¥{" and ¥;?! are evaluated in the following manner. [f we
substitute (4.2) and (4.3) into the finite difference equations (2.3) (with #;; replaced
by g,;) and equate coefficients of cos k¢; and sin k¢, then

aiV,’f‘l.)i—l —(a; -+ by) Vm + b, V;(Zim - ’\k,iVlg\:; = Gz(:z)z' 5 44

for
i=1,2; i=12,..,m and k=2901,.,L,

where
A = 2d{1 — cos kd .

For each £ and /, (4.4) represents a tridiagonal system of m equations in m - 2
unknowns Vi i = 0, 1,..., m + 1. Therefore (4.4) must be augmented with addi-
tional equations. Since (4.3) is constant at the poles we have

@ PPN
”) V!jm—H =0 1'15?

for{=1,2and k =1,2,.., L. For k = 0 the system {4.4} is augmented by

V{1 = vy which can be arbitrarily specified and

( (
”BVO,I) 4 017)1»+1 = Gﬂ) 1 s

which is obtained by substituting (4.2) and (4.3) into (2.7) with f§ replaced by g .
Once the 7" are determined by solving the tridiagonal systems (4.4) augmented
by (4.5) and (4.6), then the solution v, ; is obtained by a fast Fourier synthesis of
{4.3). Since the Fourier transforms require on the order of # In » operations, the
total operation count is proportional to m In #.

N

B

(‘)\

4
7. 0)
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We close this section with a table of computational results. The calculations were
performed on the Control Data 7600 and times are in milliseconds. The error is the
maximum absolute value of the difference between the solution of the finite
difference equations and the computed solution.

Computational Results

n m Time Error

32 15 13 4.33 x 10718

64 31 56 2.28 x 10712

128 63 208 4.39 x 10~
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